Learning distance function for regression-based 4D pulmonary trunk model reconstruction estimated from sparse MRI data

نویسندگان

  • Dime Vitanovski
  • Alexey Tsymbal
  • Razvan Ioan Ionasec
  • Bogdan Georgescu
  • Shaohua Kevin Zhou
  • Joachim Hornegger
  • Dorin Comaniciu
چکیده

Congenital heart defect (CHD) is the most common birth defect and a frequent cause of death for children. Tetralogy of Fallot (ToF) is the most often occurring CHD which affects in particular the pulmonary valve and trunk. Emerging interventional methods enable percutaneous pulmonary valve implantation, which constitute an alternative to open heart surgery. While minimal invasive methods become common practice, imaging and non-invasive assessment tools become crucial components in the clinical setting. Cardiac computed tomography (CT) and cardiac magnetic resonance imaging (cMRI) are techniques with complementary properties and ability to acquire multiple non-invasive and accurate scans required for advance evaluation and therapy planning. In contrary to CT which covers the full 4D information over the cardiac cycle, cMRI often acquires partial information, for example only one 3D scan of the whole heart in the end-diastolic phase and two 2D planes (long and short axes) over the whole cardiac cycle. The data acquired in this way is called sparse cMRI. In this paper, we propose a regression-based approach for the reconstruction of the full 4D pulmonary trunk model from sparse MRI. The reconstruction approach is based on learning a distance function between the sparse MRI which needs to be completed and the 4D CT data with the full information used as the training set. The distance is based on the intrinsic Random Forest similarity which is learnt for the corresponding regression problem of predicting coordinates of unseen mesh points. Extensive experiments performed on 80 cardiac CT and MR sequences demonstrated the average speed of 10 seconds and accuracy of 0.1053mm mean absolute error for the proposed approach. Using the case retrieval workflow and local nearest neighbour regression with the learnt distance function appears to be competitive with respect to ”black box” regression with immediate prediction of coordinates, while providing transparency to the predictions made.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cross-Modality Assessment and Planning for Pulmonary Trunk Treatment Using CT and MRI Imaging

Congenital heart defect is the primary cause of death in newborns, due to typically complex malformation of the cardiac system. The pulmonary valve and trunk are often affected and require complex clinical management and in most cases surgical or interventional treatment. While minimal invasive methods are emerging, non-invasive imaging-based assessment tools become crucial components in the cl...

متن کامل

Morphological and Functional Modeling of the Heart Valves and Chambers

Personalized cardiac models have become a crucial component of the clinical workflow, especially in the context of complex cardiovascular disorders, such as valvular heart disease. In this chapter we present a comprehensive framework for the patient-specific modeling of the valvular apparatus and heart chambers from multimodal cardiac images. An integrated model of the four heart valves and cha...

متن کامل

Accurate Regression-based 4D Mitral Valve Segmentation from 2D MRI Slices

Cardiac MR (CMR) imaging is increasingly accepted as the gold standard for the evaluation of cardiac anatomy, function and mass. The multi-plan ability of CMR makes it a well suited modality for evaluation of the complex anatomy of the mitral valve (MV). However, the 2D slice-based acquisition paradigm of CMR limits the 4D capabilities for precise and accurate morphological and pathological ana...

متن کامل

A robust least squares fuzzy regression model based on kernel function

In this paper, a new approach is presented to fit arobust fuzzy regression model based on some fuzzy quantities. Inthis approach, we first introduce a new distance between two fuzzynumbers using the kernel function, and then, based on the leastsquares method, the parameters of fuzzy regression model isestimated. The proposed approach has a suitable performance to<b...

متن کامل

Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains

In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011